



POLYURETHANE AND POLYISOCYANURATE INSULATION

The main properties of these types of insulation include high thermal resistance —allowing for thinner insulating panels—, rigidity and lightness, which facil- itate handling and installation. Rigid polyurethane foam (PUR) is an excellent thermal insulator with low thermal conductivity, light weight, high durability and optimal chemical and organic sta- bility. Rigid polyisocyanurate (PIR) is a variant of PUR foam with similar appearance and mechanical and thermal properties but offering greater fire and temperature resistance.

THERMAL AND PHYSICAL PROPERTIES					
THICKNESS		LTTR	Max. Flute-Span Capability		
in	mm	(R-Value**	r) in	mm	
1.0	25.4	5.7	2 5/8	66.7	
1.5	38.1	8.6	4 3/8	111	
2.0	51	11.4	4 3/8	111	
2.5	64	14.4	4 3/8	111	
3.0	76	17.4	4 3/8	111	
3.5	89	20.5	4 3/8	111	
4.0	102	23.6	4 3/8	111	
4.5	114	26.8	4 3/8	111	

*Long Term Thermal Resistance (LTTR) values provide a 15-year time weighted average in accordance with CAN/ULC S770. Note: Physical and thermal properties shown are based on data obtained under controlled laboratory conditions and are subject to normal manufacturing tolerances.

PROPERTY	VALUE	MÉTODO DE PRUEBA	
Water absorption, % by volume – 2	1.5 max.	ASTM C209	
hrs. (under 1" [25.4 mm] of water)			
Dimensional stability change, 7 days			
@ 158 °F (70 °C), 97% RH • Length +	<2%	ASTM D2126	
Width			
Compressive strength – psi (kPa)	25 (172) nom. Grade 3 20 (138) nom. Grade 2 ≥ 500	ASTM D1621	
Tensile strength – psf (kPa)	(23.9)	ASTM C209	
	<1.5 perm (85.8 ng/Pa s m2)	ASTM E96	
Moisture vapor transmission	<75	(Procedure A)	
		ASTM E84	
Flame spread index1, 2			
-Service temperature			
	-100–200 °F (-73.3–93.3 °C)		

¹ 유명은 유대해외권 ratings are not intended to reflect hazards presented by these or any other material under actual fire conditions.

TYPICAL PHYSICAL PROPERTIES

